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Lecture No. 8 

Hermite Interpolation  

 Develop an interpolating function 𝑔(𝑥) which equals the function and its derivatives up to 

𝑝𝑡ℎ order at 𝑁 + 1 nodes or data points.          𝑓(𝑥) 

     𝑓0, 𝑓0
(1)
, 𝑓0
(2)
, 𝑒𝑡𝑐                     𝑔(𝑥) 

                𝑓1, 𝑓1
(1), 𝑓2

(2)
      

                      𝑓𝑁 , 𝑓𝑁
(1), 𝑓𝑁

(2)
 

       𝑥0  𝑥1     𝑥2    𝑓2, 𝑓2
(1), 𝑓2

(2), 𝑒𝑡𝑐  𝑥𝑁 

 Thus we require that  

𝑔(𝑥𝑖) = 𝑓𝑖  𝑖 = 0, 𝑁 → 𝑁 + 1 constraints 

𝑔1(𝑥𝑖) = 𝑓𝑖
(1)

  𝑖 = 0, 𝑁 

𝑔𝑝(𝑥𝑖) = 𝑓𝑖
(𝑝)

  𝑖 = 0, 𝑁 

∴ (𝑝 + 1)(𝑁 + 1) constraints ⇒ 

𝑔(𝑥) will be a polynomial of degree (𝑝 + 1)(𝑁 + 1) − 1 (# of constraints must be 

equal # of unknowns coef.’s in 𝑔(𝑥)!) 
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∴ 𝑔(𝑥) = ∑ 𝑎𝑖𝑥
𝑖

(𝑁+1)(𝑝+1)−1

𝑖=0

 

Example: Develops a two data point Hermite interpolation function which passes through the 

function and its first derivative 

 

   𝑥𝑖   𝑓𝑖    𝑓𝑖
(1) 

  𝑥0 0  𝑓0   𝑓0
(1) 

  𝑥1 +1  𝑓1   𝑓1
(1) 

 4 constraints ⇒ 𝑔(𝑥) is 3rd degree polynomial 

Note that 𝑝 = 1 and 𝑁 + 1 = 2 ⇒ (𝑝 + 1)(𝑁 + 1) − 1 = 3  

 𝑔(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 + 𝑎3𝑥

3 

𝑔(1)(𝑥) = 𝑎1 + 2𝑎2𝑥 + 3𝑎3𝑥
2  

 Apply constraints 

𝑔(0) = 𝑓0 ⇒  

𝑎0 = 𝑓0  
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𝑔(1) = 𝑓1 ⇒  

𝑎0 + 𝑎1 + 𝑎2 + 𝑎3 = 𝑓1  

 

𝑔(1)(0) = 𝑓0
(1) ⇒  

𝑎1 = 𝑓0
(1)

  

 

𝑔(1)(1) = 𝑓1
(1) ⇒  

𝑎1 + 2𝑎2 + 3𝑎3 = 𝑓1
(1)

  

 

 Write constraints eqs in matrix form as: 

[

1
1
0
0

    

0
1
1
1

    

0
1
0
2

    

0
1
0
3

] [

𝑎0
𝑎1
𝑎2
𝑎3

] =

[
 
 
 
 
𝑓1
𝑓1

𝑓0
(1)

𝑓1
(1)
]
 
 
 
 

 

⇒ 

𝑎0 = 𝑓0 

𝑎1 = 𝑓0
(1)

 

𝑎2 = 3𝑓1 − 3𝑓0 − 𝑓1
(1) − 2𝑓0

(1)
 

𝑎3 = −2𝑓1 + 2𝑓0 + 𝑓0
(1) + 𝑓1

(1)
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∴ 𝑔(𝑥) = 𝑓0 + 𝑓0
(1)
𝑥 + (3𝑓1 − 3𝑓0 − 𝑓1

(1)
− 2𝑓0

(1)
) 𝑥2 + (−2𝑓1 + 2𝑓0 + 𝑓0

(1)
+ 𝑓1

(1)
) 𝑥3  

We note that constraints are indeed satisfied 

𝑔(0) = 𝑓0     𝑔(1) = 𝑓1     𝑔
(1)(0) = 𝑓0

(1)     𝑔(1)(1) = 𝑓1
(1)

 

 Re-writing (collecting terms 𝑓0; 𝑓1 etc) 

𝑔(𝑥) = 𝑓0(2𝑥
3 − 3𝑥2 + 1) + 𝑓1(−2𝑥

3 + 3𝑥2) + 𝑓0
(1)(𝑥3 − 2𝑥2 + 𝑥)

+ 𝑓1
(1)(𝑥3 − 2𝑥2 + 𝑥) + 𝑓1

(1)(𝑥3 − 𝑥2) 

⇒ 

𝑔(𝑥) = 𝑓0𝜙0(𝑥) + 𝑓1𝜙1(𝑥) + 𝑓0
(1)𝜓0(𝑥) + 𝑓1

(1)𝜓1(𝑥)  

where  𝜙0(𝑥) = 2𝑥
3 − 3𝑥2 + 1  associated with function value at node 𝑥0 

𝜙1(𝑥) = −2𝑥
3 − 3𝑥2  associated with function value at node 𝑥1 

𝜓0(𝑥) = 𝑥
3 − 2𝑥2 + 𝑥  associated with first derivative value at node 𝑥0 

𝜓1(𝑥) = 𝑥
3 − 𝑥2   associated with first derivative value at node 𝑥1 

(note 𝜙0, 𝜙1 different from Lagrange interpolation basis functions) 
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∴ Each node has 2 interpolating basis function associated with it, one associated with the 

function value and one with first derivative. Each of the functions (2 func/node and 2 nodes) 

are cubics 

 

 

 

 

 

 From our eq. for 𝑔(𝑥) we note that each interpolating basis function can be defined 

separately. 

─ Each function is a cubic 
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─ Constraint equations fall out 

𝑔(𝑥0) = 𝑓0          ⇒

𝑔(𝑥1) = 𝑓1          ⇒

𝑔(1)(𝑥0) = 𝑓0
(1)  ⇒

𝑔(1)(𝑥1) = 𝑓1
(1)  ⇒

  

𝜙0(𝑥0) = 1

𝜙0(𝑥1) = 0

𝜙0
(1)(𝑥0) = 0

𝜙0
(1)(𝑥1) = 0

     

𝜙1(𝑥0) = 0

𝜙1(𝑥1) = 1

𝜙1
(1)(𝑥0) = 0

𝜙1
(1)(𝑥1) = 0⏟                  

𝜙𝑖(𝑥𝑗)=𝛿𝑖𝑗

𝜙𝑖
(1)
(𝑥𝑗)=0

 

𝜓0(𝑥0) = 0

𝜓0(𝑥1) = 0

𝜓0
(1)(𝑥0) = 1

𝜓0
(1)(𝑥1) = 0

     

𝜓1(𝑥0) = 0

𝜓1(𝑥1) = 0

𝜓1
(1)(𝑥0) = 0

𝜓1
(1)(𝑥1) = 1⏟                  

𝜓𝑖(𝑥𝑗)=0

𝜓𝑖
(1)
(𝑥𝑗)=𝛿𝑖𝑗

 

      16 constraints 

Each interpolating basis function is defined as a cubic 

∴ 𝜙𝑖(𝑥) = 𝑎𝑖 + 𝑏𝑖𝑥 + 𝑐𝑖𝑥
2 + 𝑑𝑖𝑥

3 𝑖 = 0,1 

𝜓𝑖(𝑥) = 𝑒𝑖 + 𝑓𝑖𝑥 + 𝑔𝑖𝑥
2 + ℎ𝑖𝑥

3 𝑖 = 0,1 

16 unknowns 
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 General Hermite Interpolation  

N data points/nodes j function, 1st derivative → pth derivative 

𝑔(𝑥) =∑𝜙𝑖

𝑁

𝑖=0

(𝑥)𝑓𝑖 +∑𝜓𝑖(𝑥)𝑓𝑖
(1) +⋯+∑Ѳ𝑖(𝑥)𝑓𝑖

(𝑃)

𝑁

𝑖=0

𝑁

𝑖=0

 

 To satisfy 

𝑔(𝑥𝑗) = 𝑓𝑗 ⇒     ∑𝜙𝑖(𝑥𝑗)𝑓𝑖 +∑𝜓𝑖(𝑥𝑗)𝑓1
(1) +⋯+∑Ѳ𝑖(𝑥𝑗)𝑓𝑖

(𝑃) = 𝑓𝑗

𝑁

𝑖=0

𝑁

𝑖=0

𝑁

𝑖=0

 

Requires the following constraints: 

𝜙𝑖(𝑥𝑗) = 𝛿𝑖𝑗 𝑖, 𝑗 = 0, 𝑁 

𝜓𝑖(𝑥𝑗) = 0  𝑖, 𝑗 = 0, 𝑁 

     ⋮    ⋮ 

Ѳ𝑖(𝑥𝑗) = 0  𝑖, 𝑗 = 0, 𝑁   
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 To satisfy 

𝑔(1)(𝑥𝑗) = 𝑓𝑗
(1)
⇒   ∑𝜙𝑖

(1)
(𝑥𝑗)𝑓𝑖 +∑𝜓𝑖

(1)
(𝑥𝑗)𝑓𝑖

(1)
+⋯+∑Ѳ𝑖

(1)
(𝑥𝑗)𝑓𝑖

(𝑃)
= 𝑓𝑗

(1)

𝑁

𝑖=0

𝑁

𝑖=0

𝑁

𝑖=0

 

Leads to 2nd set of (𝑝 + 1)(𝑁 + 1) constraints 

𝜙𝑖
(1)(𝑥𝑗) = 0  𝑖, 𝑗 = 0, 𝑁 

𝜓𝑖
(1)(𝑥𝑗) = 𝛿𝑖𝑗  𝑖, 𝑗 = 0, 𝑁 

  ⋮   𝑖, 𝑗 = 0, 𝑁 

Ѳ𝑖
(1)(𝑥𝑗) = 0  𝑖, 𝑗 = 0, 𝑁   

 

 (𝑃 + 1)𝑡ℎ set of (𝑝 + 1)(𝑁 + 1) constraints: 

𝜙𝑖
(𝑃)(𝑥𝑗) = 0  𝑖, 𝑗 = 0, 𝑁 

𝜓𝑖
(𝑃)(𝑥𝑗) = 0  𝑖, 𝑗 = 0, 𝑁        

  ⋮   𝑖, 𝑗 = 0, 𝑁   

Ѳ𝑖
(𝑃)(𝑥𝑗) = 𝛿𝑖𝑗  𝑖, 𝑗 = 0, 𝑁 
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 Each set of (interpolating) basis functions has the general form 

𝜙𝑖(𝑥) = ∑ 𝑎𝑖,𝑗𝑥
𝑗

(𝑝+1)(𝑁+1)−1

𝑗=0

          𝑖 = 0,𝑁 

𝜓𝑖(𝑥) = ∑ 𝑏𝑖,𝑗𝑥
𝑗

(𝑝+1)(𝑁+1)−1

𝑗=0

          𝑖 = 0, 𝑁 

        ⋮ 

Ѳ𝑖(𝑥) = ∑ 𝑡𝑖,𝑗𝑥
𝑗

(𝑝+1)(𝑁+1)−1

𝑗=0

          𝑖 = 0, 𝑁 
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Applying Hermite Interpolation to Develop 𝑢𝑎𝑝𝑝 

 Develop an approximation 𝑢𝑎𝑝𝑝 which is the sum of Localized Hermite approximations 

which satisfy 𝐶1 functional continuity 

𝑢𝑎𝑝𝑝 =∑∑[𝑢𝑖
𝑗
𝜙𝑖
𝑗
+ 𝑢𝑖

(1)𝑗𝜓𝑖
𝑗
]

𝑁𝑗

𝑖=1

𝑀

𝑗=1

 

where 𝑢𝑖
𝑗
  = functional value at node i within element j 

  𝜙𝑖
𝑗
  = Hermite basis function at node i within element j associated with the 

function       value. All 𝜙𝑖
𝑗
 are equal to zero outside of element j 

     Also note that these are not the same function as were used in Lagrange  

      interpolation 

  𝑢𝑖
(1)𝑗

 = first derivative value at node i within element j 

  𝜓𝑖
𝑗
 = Hermite basis function at node i within element j associated with the first  

     derivative value. All Ѱ𝑖
𝑗
 are equal to zero outside of element j 

 𝑗 = 1,𝑀 = total no. of finite elements 

 𝑖 = 1, 𝑁𝑗 = total no. of nodes within element j 
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 element   

 

 

 

local unknown  element index  

function values  

 node index 

local unknown denotes 

derivative derivative 

values  

 Thus the unknown expansion coefficients are now equal to the function and first derivative 

values at the nodes. 

 To ensure 𝐶1 inter-element functional continuity we must have at all inter-element 

boundaries: 

𝑢𝑎𝑝𝑝 (to the left of an inter-element boundary) = 𝑢𝑎𝑝𝑝 (to the right of an inter-element 

boundary) 
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 For the example case given: 

─ Anywhere in element 1 

𝑢1(𝑥) = 𝑢1
1𝜙1

1(𝑥) + 𝑢2
1𝜙2

1(𝑥) + 𝑢1
(1)1𝜓1

1(𝑥) + 𝑢2
(1)1𝜓2

1(𝑥) 

Note that all other Hermite basis functions from other elements are defined as zero 

─ Anywhere in element 2 

𝑢2(𝑥) = 𝑢1
2𝜙1

2(𝑥) + 𝑢2
2𝜙2

2(𝑥) + 𝑢1
(1)2𝜓1

2(𝑥) + 𝑢2
(1)2𝜓2

2(𝑥) 

─ Element 1 evaluated at r.h.s. 

𝑢1(𝑥2
1) = 𝑢2

1 (since only 𝜙2
1(𝑥2

1) = 1 and all other basis functions equal zero at 𝑥2
1) 

─ Element 2 evaluated at l.h.s 

𝑢2(𝑥1
2) = 𝑢1

2 (since only 𝜙1
2(𝑥1

2) = 1 and all other basis functions equal zero at 𝑥1
2) 

─ To ensure 𝐶1 functional continuity we must have functional values equal at the inter-

element boundaries. Thus we must have functional expansion coef.’s equal at inter-

element boundaries. 

𝑢2
1 = 𝑢1

2 

─ Other functional unknowns are related as (for our example) 

𝑢3
2 = 𝑢1

3 

𝑢3
3 = 𝑢1

4 
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 To ensure 𝐶1 inter-element functional continuity we must also have at all inter-element 

boundaries 

𝑑𝑢𝑎𝑝𝑝

𝑑𝑥
 (to the left of an inter-element boundary) =

𝑑𝑢𝑎𝑝𝑝

𝑑𝑥
 (to the right of an inter-element 

boundary) 

 For the example case give 

─ Anywhere in element 1 

𝑑𝑢1(𝑥)

𝑑𝑥
= 𝑢1

1
𝑑𝜙1

1(𝑥)

𝑑𝑥
+ 𝑢2

1
𝑑𝜙2

1(𝑥)

𝑑𝑥
+ 𝑢1

(1)1 𝑑𝜓1
1(𝑥)

𝑑𝑥
+ 𝑢2

(1)1 𝑑𝜓2
1(𝑥)

𝑑𝑥
 

Note that all other Hermite basis functions from other elements are defined as zero 

─ Anywhere in element 2 

𝑑𝑢2(𝑥)

𝑑𝑥
= 𝑢1

2
𝑑𝜙1

2(𝑥)

𝑑𝑥
+ 𝑢2

2
𝑑𝜙2

2(𝑥)

𝑑𝑥
+ 𝑢1

(1)2 𝑑𝜓1
2(𝑥)

𝑑𝑥
+ 𝑢2

(1)2 𝑑𝜓2
2(𝑥)

𝑑𝑥
 

─ Evaluate derivative for element 1 at r.h.s. 

𝑑𝑢1(𝑥2
1)

𝑑𝑥
= 𝑢2

(1)1
 

(since only 
𝑑𝜓2

1(𝑥2
1)

𝑑𝑥
= 1 and all other derivatives of basis functions evaluated at 𝑥2

1 are 

equal to zero) 
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─ Evaluate derivative for element 2 at l.h.s. 

𝑑𝑢2(𝑥1
2)

𝑑𝑥
= 𝑢1

(1)2
 

(Since only 
𝑑𝜓1

2(𝑥1
2)

𝑑𝑥
= 1 and all other derivatives of basis functions evaluated at 𝑥1

2 are 

equal to zero) 

─ To ensure 𝑐1 functional continuity we must have first derivative values equal at inter-

element boundaries. Thus we must have first derivative expansion coef.’s equal at inter-

element boundaries: 

𝑢2
(1)1 = 𝑢1

(1)2
 

─ Other first derivative unknowns are related as (for our example) 

𝑢2
(1)2 = 𝑢1

(1)3
 

𝑢3
(1)3 = 𝑢1

(1)4
 

 Again there are several approaches to implement the inter-element functional and first 

derivative continuity (i.e. setting equal the adjacent inter-element function value and first 

derivative expansion coefficients)  
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─ Develop “Cardinal” basis functions which are formed by patching together the various 

localized Hermite basis function and defining them globally. This also implies that you 

redefine the expansion coef.’s globally (so that now there will only be 2 coef.’s per node, 

one function value and one first derivative value) 

─ Actually implement all expansions locally. Then take care of inter-element functional 

continuity by assembling the “global” matrix correctly 

 Now both function and first derivative b.c.’s can be easily incorporated for 1-D problems 

─ Separately i.e. either function or first derivative 

─ As a pair of “essential” b.c.’s associated with a fourth order operator 

 Even in multiple dimensional problems, function and first derivatives specified b.c.’s can be 

easily incorporated. 

 Note that b.c. implementation/satisfaction and inter-element functional continuity 

enforcement are made simple and possible by the use of the Hermite basis functions. We 

must however place nodes at the ends of the domain as well as at the ends of each element 

for this to work. 

 The Hermite basis functions 𝜙𝑖
𝑗(𝑥) and 𝜓𝑖

𝑗(𝑥) are linearly independent 
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Example 

Solve 

𝑑4𝑢

𝑑𝑥4
= 0 for ∈ [𝑥𝐿, 𝑥𝑅] 

Essential b.c. are specified as 

𝑢(𝑥 = 𝑥𝐿) = 𝑢𝐿 

𝑑𝑢

𝑑𝑥
|
𝑥=𝑥𝐿

= 𝑢𝐿
(1)

 

𝑢(𝑥 = 𝑥𝑅) = 𝑢𝑅 

𝑑𝑢

𝑑𝑥
|
𝑥=𝑥𝑅

= 𝑢𝑅
(1)
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Consider the following 4 global nodes defined over 3 elements 
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 We will have the following elemental base expansion 

𝑢𝑎𝑝𝑝 = 𝑢𝐿𝜙1
1 + 𝑢𝐿

(1)𝜓1
1⏞          

𝑝𝑎𝑟𝑡 𝑜𝑓 𝑢𝐵

+ 𝑢2
1𝜙2

1 + 𝑢2
(1)1𝜓2

1 + 𝑢1
2𝜙1

2 + 𝑢1
(1)2𝜓1

2

+ 𝑢2
2𝜙2

2 + 𝑢2
(1)2𝜓2

2 + 𝑢1
3𝜙1

3 + 𝑢1
(1)3𝜓1

3

+ 𝑢𝑅𝜙2
3 + 𝑢𝑅

(1)𝜓2
3

⏟          
𝑝𝑎𝑟𝑡 𝑜𝑓 𝑢𝐵

 

 

 

 This expansion has 8 local unknowns 

 

 2 functional and 2 derivative inter-element constraints will 

 be enforced to ensure 𝐶1 continuity 
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 We can also patch together these functions and form “cardinal” bases.  

This will lead to the following global expansion. 

𝑢𝑎𝑝𝑝 = 𝑢𝐿𝛷𝑛1 + 𝑢𝐿
(1)Ѱ𝑛1 + 𝑢𝑛2𝛷𝑛2 + 𝑢𝑛2

(1)Ѱ𝑛2 + 𝑢𝑛3𝛷𝑛3 + 𝑢𝑛3
(1)Ѱ𝑛3 + 𝑢𝑅𝛷𝑛4 + 𝑢𝑅

(1)Ѱ𝑛4 

 

𝛷𝑛1 = 𝜙1
1    𝑢𝑛1 = 𝑢1

1 = 𝑢𝐿  essential b.c. 

Ѱ𝑛1 = 𝜓1
1    𝑢𝑛1

(1) = 𝑢1
(1)1 = 𝑢𝐿

(1)
  essential b.c. 

𝛷𝑛2 = 𝜙2
1 + 𝜙2

1   𝑢𝑛2 = 𝑢2
1 = 𝑢1

2  unknown 

Ѱ𝑛2 = 𝜓2
1 + 𝜓1

2   𝑢𝑛2
(1) = 𝑢2

(1)1 = 𝑢1
(1)2

 unknown 

𝛷𝑛3 = 𝜙2
2 + 𝜙1

3   𝑢𝑛3 = 𝑢2
2 = 𝑢1

3  unknown 

Ѱ𝑛3 = ψ2
2 + 𝜓1

3   𝑢𝑛3
(1) = 𝑢2

(1)2 = 𝑢1
(1)3

 unknown 

Ѱ𝑛4 = 𝜓2
3    𝑢𝑛4 = 𝑢2

3 = 𝑢𝑅  essential b.c. 

Ѱ𝑛4 = 𝜓2
3    𝑢𝑛4

(1) = 𝑢2
(1)3 = 𝑢𝑅

(1)
  essential b.c. 
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 Note that the global or cardinal basis functions and the associated expansion 𝑢𝑎𝑝𝑝 

automatically satisfy the 𝐶1 functional continuity. This is not true for the local expansions 

for which we must still enforce the functional continuity constraints. However this will be 

easy to do! Overall working with local expansions will be much easier! 

 

 

𝛷𝑛1 

 

Ѱ𝑛1 

 

𝛷𝑛2 

 

Ѱ𝑛2 

 

𝛷𝑛3 

 

Ѱ𝑛3 

 

𝛷𝑛4 

 

Ѱ𝑛4 

  



C E  6 0 1 3 0  F I N I T E  E L E M E N T  M E T H O D S -  L E C T U R E  8      P a g e  21 | 28 

Hermite Cubic Basis Functions 

 Form an approximation which has: 

─ Functional continuity 

─ Continuity of the first derivative 

─ Piecewise continuous 2nd derivatives 

 Advantages 

─ Gives highly accurate interpolation functions. 

─ Have enough functional continuity to be used with FE collocation (for 𝐿(𝑢) 2nd order) 

or for any formulation that requires 𝐶1 or higher continuity (e.g. symmetrical weak 

form of a 4th order p.d.e) 
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Construction of Hermite Cubics 

Desire both inter-element continuity of the function and the first derivative. 

Thus p and 𝑝,𝑥 are the unknowns at 2 end nodes. 

We need 4 parameters and 2 nodes per element. 

The simplest polynomial for the element is: 

 

𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + 𝑐2𝑥
2 + 𝑐3𝑥

3 

 

 Number of unknowns    4N 

 Number of continuity Constraints  2(N-1) 

 Number of global unknowns   2(N+1) 

At each node we will define 2 basis functions 𝜙(𝑖)(𝑥) and ѱ𝑖(𝑥), one associated with the 

function and the second associated with the derivative 
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Deviation of Hermite Cubic Basis Functions for the unit element 

𝜙𝑖(𝜉) = 𝑎𝑖 + 𝑏𝑖𝜉 + 𝑐𝑖𝜉
2 + 𝑑𝑖𝜉

3,     𝑖 = 1,2 

and 

ѱ𝑖(𝜉) = 𝑒𝑖 + 𝑓𝑖𝜉 + 𝑔𝑖𝜉
2 + ℎ𝑖𝜉

3,     𝑖 = 1,2 

thus we have a total of 16 unknown coefficients. 

 We define 8 constraint equations by requiring that: 

𝜙𝑖(𝜉𝑗) = 𝛿𝑖𝑗 and 
𝑑𝜙𝑖

𝑑𝜉
(𝜉𝑗) = 0,     𝑖, 𝑗 = 1,2 

Thus 𝜙 has values of 1 and 0 and 0 and 1 for the 2 nodes and always has zero first 

derivatives at the 2 nodes. 

 Furthermore we define an additional 8 constraint equations by requiring that: 

ѱ𝑖(𝜉𝑗) = 0 and 
𝑑ѱ𝑖

𝑑𝜉
(𝜉𝑗) = 𝛿𝑖𝑗

∆𝑥

2
     𝑖, 𝑗 = 1,2 

Hence ѱ always has a value of 0 and 
𝑑ѱ

𝑑𝜉
 has values of (

∆𝑥

2
 and 0) and (0 and 

∆𝑥

2
) for the 2 

nodes. 

 Thus we have a total of 16 unknowns and 16 constraint equations. 

 Let the nodes for the unit element be 𝜉1 = −1 and 𝜉2 = +1. Applying the above constraints 

we obtain: 
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𝜙1(𝜉) =
1

4
(𝜉 − 1)2(𝜉 + 2) 

𝜙2(𝜉) =
1

4
(2 − 𝜉)(𝜉 + 1)2 

ѱ1(𝜉) =
∆𝑥

8
(𝜉 − 1)2(𝜉 + 1) 

ѱ2(𝜉) =
∆𝑥

8
(𝜉 − 1)(𝜉 + 1)2 

 

 

 𝜙1 and 𝜙2 are plotted as: 

  

  

  

  

  

  

  

Note that the slope is always zero at the nodes 
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 ѱ1 and ѱ2 are plotted as follows: 

  

  

  

  

  

  

Note that these functions are always zero at the nodes: 

 The approximating function over the element is defined as: 

�̂�𝑒 = 𝑢1
𝑒𝜙1

𝑒 + 𝑢2
𝑒𝜙2

𝑒 + 𝑢1
(1)𝑒ѱ1

𝑒 + 𝑢2
(1)𝑒ѱ2

𝑒 

 The unknown coefficients of 𝜙 at the nodes equal the functional values at the nodes: 

�̂�𝑒
𝑒(𝜉1) = 𝑢1

𝑒 and �̂�𝑒
𝑒(𝜉2) = 𝑢2

𝑒 

 The unknown coefficients of ѱ at the nodes are related to the slope at the nodes: 

𝑑�̂�𝑒

𝑑𝜉
(𝜉1) = 𝑢1

(1)𝑒 ∆𝑥

2
 

𝑑�̂�𝑒

𝑑𝜉
(𝜉2) = 𝑢2

(1)𝑒 ∆𝑥

2
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However 

𝑑�̂�𝑒

𝑑𝑥
|
𝑥=𝑥1

=
𝑑�̂�𝑒

𝑑𝜉
|
𝜉=𝜉1

𝑑𝜉

𝑑𝑥
= 𝑢1

(1)𝑒 ∆𝑥

2

2

∆𝑥
= 𝑢1

(1)𝑒
 

similarly 

𝑑�̂�𝑒

𝑑𝑥
|
𝑥=𝑥2

= 𝑢1
(1)𝑒

 

Therefore the unknown coefficients of ѱ evaluated at the nodes equal the derivative of 

the function (globally) at the node. 

 Basis functions are related to local basis functions by the same coordinate transformation as 

for the Lagrange basis functions: 

𝜙1(𝜉) = 𝜙2𝑗−1(𝑥(𝜉)) = 𝜙2𝑗−1(𝑥) 

𝜙2(𝜉) = 𝜙2𝑗(𝑥(𝜉)) = 𝜙2𝑗(𝑥) 

ѱ1(𝜉) = ѱ2𝑗−1(𝑥(𝜉)) = ѱ2𝑗−1(𝑥) 

ѱ2(𝜉) = ѱ2𝑗(𝑥(𝜉)) = ѱ2𝑗(𝑥) 

 Taking into account the functions we generated and their associated continuity constraints 

we have the following 2(𝑁 + 1)“Cardinal” Basis (these a priori incorporate functional 

continuity): 
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 Hence we have  

�̂�(𝑥) = ∑ 𝑢𝑛𝑖𝛷𝑛𝑖(𝑥) + ∑ 𝑢𝑛𝑖
(1)Ѱ𝑛𝑖

𝑁+1

𝑛𝑖=1

𝑁+1

𝑛𝑖=1

 

 We note that at node i: 

𝑢𝑛𝑖 = global functional value at node ni 

𝑢𝑛𝑖
(1) = global derivative calue at node ni 

It’s very useful and convenient to solve directly for both the function value and its first 

derivative at the nodes: 
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 Derivatives in general (not at the nodes) are evaluated as: 

𝑑�̂�

𝑑𝑥
= ∑ 𝑢𝑛𝑖

𝑑𝛷𝑛𝑖
𝑑𝑥

+ ∑ 𝑢𝑛𝑖
(1)

𝑁+1

𝑖=1

𝑑Ѱ𝑛𝑖
𝑑𝑥

𝑁+1

𝑛𝑖=1

 

for local basis functions: 

𝑑�̂�𝑒

𝑑𝑥
= 𝑢1

𝑒
𝑑𝜙1

𝑒

𝑑𝜉

𝑑𝜉

𝑑𝑥
+ 𝑢2

𝑒
𝑑𝜙2

𝑒

𝑑𝜉

𝑑𝜉

𝑑𝑥
+ 𝑢1

(1)𝑒 𝑑ѱ1
𝑒

𝑑𝜉

𝑑𝜉

𝑑𝑥
+ 𝑢2

(1)𝑒 𝑑ѱ2
𝑒

𝑑𝜉

𝑑𝜉

𝑑𝑥
 

We note that 

𝑑𝜉

𝑑𝑥
=
∆𝑥

2
 

Summary of Basis Functions 

a.   For a 1-D problem numbered sequentially 

b. Degrees of freedom 

Basis No. of Unknowns Bandwidth of 

matrix 

produceda 

D.O.F. per 

nodeb 

Functional 

continuity primary cardinal 

Linear Lagrange 2N N+1 3 1 𝐶0 

Quadratic 

lagrange 

3N 2N+1 5 1 𝐶0 

Cubic Lagrange 4N 3N+1 6 1 𝐶0 

Cubic Hermite 4N 2N+2 7 2 𝐶1 


